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INTRODUCTION

Induced electric currents are generated in conductors by time vary-

ing magnetic fields. When the source of the field is outside the body,

the induced currents must flow in closed paths, hence the designation

"eddy currents". In most problems eddy currents are unwanted since they

are a source of heat and energy loss and in some applications can cre-

ate dynamic forces and magnetic pressures. A few applications, such as

magnetic forming and levitation, have exploited the dynamic force pro-

ducing capability of eddy currents. A third interest in eddy currents is

their potential for nondestructive testing. The presence of flaws or j

cracks interrupt the natural flow of electric current, and the detection

of the change of electron flow can give a clue to the presence of flaws

in solid conductors.

The calculation of eddy currents in conductors is generally carried

out by either using a magnetic or an electric potential. A comparison

of the two methods is given by Carpenter [1]. The electric field or

current density potential has the advantage that it need be calculated

only in the conductor, whereas the magnetic potential must be solved both

inside and outside the conductor. The latter method, therefore, poses

potential problems for numerical methods.

Numerical methods must generally be used for the solution of eddy

current problems in conductors of complex shape. The finite element meth-

od (FM) and the discrete circuit element method have been used for some

years for the solution of these problems. Recently, the boundary element

method (BEM) (also called the boundary integral equation method) ]Las
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been applied to problems in electromagnetics. Wu et al [2] and Ancelle

et al [31 have addressed magnetostatic problems by the BEM while Trowbridge

[4] has considered magnetostatic problems and eddy currert problems by

the magnetic potential approach. Very recently, Salon and Schneider t5]

have solved problems of eddy current flow in long prismatic conductors

by the BEM based on an electric potential approach. The boundary ele-

ment method has the important advantage that only the boundary of a body

(rather than the entire domain) needs to be discretized in a numerical

solution procedure - thus effectively reducing the dimension of a problem

by one. However, a full matrix must be treated in the BEM while the

FEM requires operations on sparse matrices.

The direct boundary element approach [2-51 uses a singular solution

of a differential equation in an infinite domain as a kernel in the cor-

responding integral equation. This direct approach can be used in simply

connected as well as multiply-connected domains. However, if a cutout in

a conducting plate is a crack, numerical difficulties might arise from

discrete modelling of the crack boundary. This difficulty can be over-

come if modified kernels are used so that the new kernels are the singu-

lar solutions of the governing differential equations for an infinite re-

gion with a crack already present in it. This technique has been recent-

ly developed for two-dimensional harmonic and biharmonic operators in

connection with study of stresses near crack tips in bodies undergoing

inelastic deformation (6-81. Use of these modified kernels allows the

proper boundary conditions to be satisfied exactly over the entire crack

surface and disocretization of the crack surface is no longer necessary

in a numerical solution procedure. The method is thus perfectly suited

to the study of two-dimensional problems of eddy current flow in cracked

bodies,
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The purpose of this paper is the study of eddy currents in thin

cracked plates with a view towards detection of cracks or flaws by non-

destructive testing. An analytical formulation using an electric poten-

tial is first presented for the determination of eddy currents in a thin

flat conducting plate with a line crack present in it. The applied mag-

netic field is assumed to be harmonic in time but can have an arbitrary

spatial distribution inside the plate, This results in Poisson's equa-

tion for the electric potential. A boundary element formulation is next

presented using modified kernels for the Laplacian operator in two dimensions.

Numerical results are given for eddy currents in a center-cracked

square plate with the applied field being that due to a circular coil.

Stream lines are given for various positions of the coil relative to the

crack. The induced temperature at any point in the plate is proportional

to the square of the density of the induced current at that point. Calcu-

lated induced temperature profiles are presented for various coil posi-

tions. An eddy current intensity factor, analogous 6o a stress intensity

factor, is defined at a crack tip. Finally, experimental results are

presented for an infrared isotherm of induced eddy currents in a cracked

aluminum plate.

GOVERNING DIFFERENTIAL EQUATIONS

A thin, flat uniform plate made of a conducting material is shown

in Fig. 1. The plate boundary can be arbitrary, its thickness is h

and the conductivity of the plate material is C. The plate has a line

crack of length c w 2a present in it. The crack can have arbitrary

orientation relative to the outside boundary of the plate.



The coordinate system chosen is shown in Fig, 1. The x1  and x2

axes lie on the mid-surface of the plate, with the xI axis along the

crack and x2  normal to it. The origin of coordinates lies at the cer-

ter of the crack in the midsurface of the plate. The x axis is normal
3

to the plate. Also, the unit vectors i, ý and k are oriented along

the coordinate axes.

Consider a current density J, which is induced in the plate by an

oscillatory magnetic field B0 outside the plate. The current distri-

bution is assumed to be uniform across the plate thickness and oscillatory

in nature. The skin depth, which is inversely proportional to the square

root of the frequency, is assumed to be large compared to the plate thick-

ness. Under these assumptions no bending occurs in the plate.

According to Ohm's law

J = aE.)

where E is the electric field (the Hall effect or magnetoresistive terms

are neglected in Ohm's law).

For low frequency currents, the continuity condition is

V.J- 0 (2)

where 7 is the gradient operator in two dimensions. Thus, a stream

function (or electric potential) *(xlX 2 ) can be defined such that

J- Vx(*k) - -kxV, (3)

mothat Jim x-2 ' J2
3" 2x1
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Using Faraday's law of induction

DB

7 E a - - (~4)

with B the total magnetic field inside the plate and t time, the

governing differential equation for the stream function is

7 a . a L (B 4- B 1 ) (5)
at t 3 3

In the above, B1 is the self magnetic field inside the plato due

to the current J. In general, this field can be obtained from the Biot-

Savart law as an integral, over the plate, of a kernel times the stream

function p. Equation (5) would then become an integro-differential

equation for the stream function (9./If, however, the applied field is

sinusoidal and the resulting skin depth is greater than ten times the plate

thickness, the self field term can be neglected relative to the applied

field Bo (101. Under this assumption, and with Bo o ei(t (where
3 3

i a [-. and w is the oscillation frequency), the spatial part of the

stream function p satisfies the equation

7 iWOB^ - f(x1, 2  6

which is a two-dimensional Poisson's equation with a prescribed nonhomo-

geneous term. For simplicity, the same notation is used in the follow-

ing for the amplitudes of the various oscillatory functions, as has been

used so far for the functions themselves.

Eddy current distributions using a similar electric potential "proach

have been obtained by Salon and Schneider [5]. Their formulation is

valid for the determination of currents in long prismatic conductors

'I
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and results in a Helmholtz equation for the stream function 4. Thus,

the work of Schneider and Salon is analogous to plane strain problems

in mechanics, while the present paper addresses conductors in the shape

of thin plates. This is analogous to plane stress.

The current must be tangential to the boundary of the plate at a point

on it. Thus, for a point on either the crack boundary aC1 or on the

outside boundary aC2  (Fig. 1)

J~n 0 d 0 n7)n - -do

where n is an unit normal to the boundary at a point on it and s is

the distance measured along a boundary in the anticlockwise sense. Thus,

if * is a constant a1  on BC1  and another constant a 2  on 9C2 ,

equation (7) is satisfied. One of these constants can be set to zero

without loss of generality and the other one is determined by the auxil-

lary condition

SJ.tds -0 (0)

where t is an unit tangent to ;C1 at a point on it. Physically,

this equation implies that the net flux following through the crack is

zero.

The boundary conditions on *, in this formulation, are therefore

* 0 on the crack boundary 9C (9)

* 0 on the outside boundary 9C2  (10)do

~ ds 0 (11)

9C1 "'
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Equations (9-11) together with the field equation (6) constitute

a well posed problem.

It should be noted that this formulation assumes that no current

flows across the crack or crack tip. This formulation leads to a cur-

rent density singularity at the crack tip, as does analogous formulations

for the stress at a crack tip. Physically we suspect that there is a

finite Pesistance or current leakage across the crack tip which would

relieve the singularity in actual conductors. However this is not con-

sidered in this paper. Instead we will characterize the current at the

crack tip by a current density intensity factor analogous to that in

fracture mechanics.

BOUNDARY ELEMNT FORMULATION

Integral equations

An integral equation formulation for Poisson's equation (6) can be

written as (Fig. 1)

2wvq(p) - I K(p,Q)G(Q)dsQ
ac2

+ fAK(P,q)f(q)dAq (12)

This is a single layer potential formulation where 0, a source

strength function on the outside boundary, must be determined from the

boundary condition on it (equation 10). The points p (or P) and

q (or Q) are source and field points, respectively, with capital let-

ters denoting points on the boundary of the body and lower case letters

denoting points inside the body. The area of the body B is denoted

by A.



The kernel K(p,q), for a simply connected region, is normally chosen

to be a singular solution of Laplace's equation in appropriate dimensions,

eg. K m Znrq W Re[O(Z,Zo)

with *(z,z) =n(-Z
00

Here rpq is the distance between a source point p and a field point

q, Be denotes the real part of the complex argument and z and z

are the source and field points, respectively, in complex notation.

In this problem, however, the kernel must be chosen such that it

vanishes on the crack boundary 3C1 . This is achieved by augmenting

* with a second piece * which equals the negative of * when the source

point z lies on aC1  (Fig. 1). Furthermore, * must satisfy Laplace's

equation and be regular inside the body B. For an elliptical cutout

Nil is derived by making use of the mapping function

2, - (WW + M (13)

which transforms the region on and outside an ellipse in the z plane

to a region on and inside an unit circle in the ý plane. The parameter

m equals (a-b)/(a+b) (with (a+b) w 2) in terms of the semi-major

and minor acies, a and b respectively, of the ellipse. For the line

crack in this problem, a is taken to be equal to 2 and b is zero.

Thus, m equals 1. Using this value of m, the augmented ftuiction

* is determined as (6]

*(z,§,zo) * 9n(l-ri/•) - 9.n(l-rij) (14)
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where ri 0 0 oril o<1

2 ,

and the kernel K in eq tion (12) is

K(p,q) -Re[O(z,_z,zo](7

A superposed bar denotes, as usual., the complex conjugate of a complex

quantity.

Use of K from equation (15) in equation (12) satisfies equation

(9). It has been proved in ref. [61 that this formulation also satis-

fies the integral condition (11) on the crack surface. Thus, the proper

boundary conditions on the crack surface are satisfied in an implicit

manner and discretization of the crank boundary is not necessary in a

numerical solution procedure.

The remaining bouidary condition (10) on the outside surface is satis-

fied by using a differenuiated version of (12) and taking the limit as p

inside B approaches a point P on ýC2 . Defining
2'

H. Re(-). Im(4~.±

H a -Re(-) 50 -Re(30 + at) (2 3x 3

and

ds d Re[-* - Hin (i summed over ., 2)

where ni are the components of the unit outward normal to aC2  at

some point on it, the boundary conditon (10) becomes
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0 Hi(P,Q)ni(P)G(Q)dsQ
ac2

+ fAN(P'q)nj(P)f(q)dAq (17)

Equation (17) is valid for a point P on aC2 where it is local-

ly smooth. It can be shown that in this case there is no extra term due

to a residue from the limiting process. The boundary integral must be

interpreted in the sense of a Cauchy principal value.

The current componenets Jl and J at a point p inside the body

are obtained from equations like (12) with the kernel K replaced by

H1 (p,Q) and H2 (p,Q) respectively. As p approaches a point on aC2

it can be shown that

if 2T (p*) - h (p*)

then 2rJ (P*) - h (P*)+ Vtt(P*)G(P*)

where p is infinitesimally close to P , @C2 is locally smooth at

P and t (P ) are the components of the unit anticlockwise tangent

vector to BC at P . Thus, the residue is zero for the normal component

and equals G(P)/2 for the tangential component of the current, as a point

approaches the outer boundary. The actual current components, of course,

remain continuous as a point approaches the boundary.

Discretization of eguations and solution strateav

The outer boundary of the body, 9C2 , is divided into A2 straight

boundary elements using Nb (Nb a N2 ) boundary nodes and the interior

of the body, A, is divided into ni triangular internal elements.

A discretized version of equation (17) is

--- * ---
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0 7Nfts Hi(PM,Q)ni(PM)G(Q)ds(

+ Y(H (Pmq)n.(?..)f(cQ)dA18

where P ia che point P where it coincides with a node M at a cen-

ter of a boundary segment on ac2  and 4s and &Ai are boundary and

internal elements respectively.

A simple numerical scheme is used in which the source strengths

G are assumed to be piecewise uniform on each boundary segment with

their values to be determined at the nodes which lie at the centers of

each segment. The integrals of Hi on boundary elements are evaluated

analytically for the singular and by Gaussian quadrature for the regu-

lar portions. Nonsingular area integrals of known integrands over tri-

angular internal cells are evaluated by Gaussian quadrature. This in-

tegrand becomes singular when the source point lies on the side of or

inside of a triangle over which the integral is being evaluated. In fact,

the location of an internal source point, in equation (12), can be ar-

bitrary. In any case, for singular integrands, the order of the singularity

is l/r, r being the distance between the source and field points.

The area element, however, is rdedr (in polar coordinates). This form

of dA is used to change the integrand into a regular function, and

then the integral is evaluated appropriately by Gaussian quadrature.

Substitution of the piecewise uniform source strengths into equa-

tion (18) and carrying out of the necessary integrations leads to an

algebraic system of the type

(0) - (AI(GI + (d) (19)
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The coefficients of the matrix [A] contain boundary integrals of

the kernel. The vector (d) contains contributions from the area integrals

and the vector (G} the unknown source strengths at the boundary nodes.

The dimension of (G) depends only on the number of boundery elements

on 9C2 and the internal discretization is necessary only for the evalu-

ation of integrals with known integrands.

Equation (12) for the stream function * and analogous equations

for the current components J 1  and J are discretizod in similar fashion.

The solution strategy is as follows. The matrix [A] and vector

(d) in equation (19) are first evaluated by using the appropriate ex-

pressions for the kernels and the prescribed function f in equation

(6). Equation (9) is solved for the vector {G}. This value of (G}

is now used in a discretized version of equation (12) to obtain the values

of the -stream function ' at any point p. Finally, the current Nee-

tor at any point is obtained from equations analogous to (12).

NUMERICAL RESULTS

Field Due to a Circular Induction Coil. A center-cracked square plate

with a circular induction coil placed above it is shown in Fig. 2. The

square plate is of side L with a center crack of length c a 2a. The

coordinate system is shown in Figs. 1, 2, The coil is of radius a 0

with its center at the point (x x2,ho), The induced field Bo at

a point q (xlx 2) in the plate, from the Biot-Savart law, is

duxR

70"7- coil (20)

Hi..
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where 0 is the permeability of vacuum, I is the current in the coil,

dS a length element along the coil (ds e a deo) and
- -0

-R xl-x 1+aocoso)i + (xo-x,+aSinO)j + o

with R

Thus, the function f(x 1 ,x 2 ) in equation (6) is

tiMTe dimensionless line integral I can be written ast( -x(11x2)* * (2-1)O,¢(x-x )n¢*oh

c~ ( 0- )c

This integral is evaluated by Gaussian Integration in the numerical

calculations (6 Gauss points between 0 and w/2).

Nondimensional Equations. Equation (6), with f(xl,x 2 ) defined by equa-

tion (21), can be nondimensionalized to the form

7 (,x 2 ) (22)

where -L, 4x /c xo. /o115 - xi I ' I

(i'.l,2) , L w4L/a , o in 4a./c S ho *4ho/cj

*2 2 2 1602
~• �+ , -•- nnd the skin depth

Dx1  3ý2 27r6

0 2

Further, the dimensionless current density is

SJe



Geometrical Parameters and Boundary Mesh. The values of the geometrical

parameters, used in the numerical calculations, are

- A Ao
Lu20 , aO s 4 and 1 , h0 o I

SU 0, 1, 2, 3, 4,, 5, ancd 6 $ x2 0

The dimensionless crack length here is 4. The results for any crack

"length c can be determined from the above equations.

A typical boundary element mesh for the problem is shown in Fig. 3.

Only the upper half of the plate is modelled due to symmetry. This mesh

has 42 boundary segments and 128 internal cells. The boundary ele-

ments are uniformly distributed along the boundary of the plate. The

symmetry line is not discretized. The unknown values of the source strengths

G (equation 18) lie only on the boundary nodes. The internal disoretiza-

tion is necessary only for the evaluation of the area integral in equation

(18). The integrand in this integral is completely known. Nonsingular

integrals are evaluated by Gaussian quadrature with 6 Gauss points

on a boundary segment and 7 Gauss points in an internal cell. A 4x4

grid is used for the evaluation of singular area integrals (see below

equation (2,8)).

The uniform field problem is analogous to the Saint Venant prob-

lem of torsion of long prismatic bars with end couples. The computer

program used here has been verified by solving torsion problems in the

absence of cracks ill] and the logic for inclusion of the crack has been

verified by solving Mode Ill crack problems [61.

The boundary integral algorithm was also applied to a plate with a

notch cut instead of a crack. The results were compared with an analysis

using a finite element method, [101, and the agreement was very good.

.~ - .
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Eddy Current and Temperature Lines. Eddy current stream lines (constant

Slines) are shown in Figs. 4-5 for a coil of radius 4. Fig. 4 shows

the lines in a plate without a crack in it, and Fig. 5 shows how the stream

lines are affected by the crack for different coil positions. A close-up

of the stream lines near a crack tip for x -2 is shown in Fig. 6. The

crowding of stream lines near the crack tip leads to large gradients of

l (and therefore large induced currents) in this region. The local tem-

perature is proportional to the square of the current density (J.J)

and this leads to a hot spot at the crack tip. This is shown in Fig. 7

which shows lines of constant induced temperature. The contour lines

go off scale as one approaches the crack tip. The behavior of the singu-

larity at the crack tip is discussed later in the subsection entitled

'Eddy Current Intensity Factor'.

Finally, the stream lines for a smaller coil (of diameter equal

to half the crack length) centered at (2,0,1) are shown in Fig. 8.

Temperature Scans. A matter of considerable interest in this approach to

nondestructive testing is the existence of hot spots due to the presence

of a crack. Figure 9 shows calculated temperature profiles along a line

slightly above the crack (x 2 0.05) Por different coil positions (^ o

0,1,2 and 6). The coil radius here is four (equal to the crack length).

Hot spots are seen near the crack tips. The strongest hot spots arise

when an edge of the ctil is near a crack tip. These temperatures are much

higher than other moderate hot spots elsewhere in the plate. A discus-

sion of experimental results is given in the next section.

..
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Self Induced Field at Center of Coil. One method of electromagnetic non-

destructive testing uses one or more passive sensing coils together with

an active induction coil [12]. The purpose of the sensing coils is to meas-

u.re the self induced field (back e.m.f.) and to try to observe changes

in back e.m.f. due to the presence of cracks. With this in view, the

self induced field was calculated at the center of the induction coil

for various coil positions. The method used is the Biot-Savart Law which

gives the induced field BI as
3

B' i0 I k* dA (23)i3 plate - R3

where now the induced current density in the plate, must be used. The

integral must be evaluated over the plate with dA an area element in

the plate. The current density is assumed to be piecewise uniform over

each internal Lzil in this approximate calculation, with the value de-

termined at the centroid (x ,xc) of the cell. Thus, in this case

(xo-xc)T + (xo-xc)T + h07

and

I h n Ai A [ J l ((X2 "X )2 
)(x 

l 'X l

where &Ai is the area of the ith triangular element.

Splot of normalized BI with respect to coil position is shown in
3

Fig. 10. The values are normalized with respect to BI when the coil
3

center is directly above the crack center (i.e. 0 m x 0). It is' x2

seen that in this example the position of the coil relative to the crack

causes little variation in the induced field at the coil center. From
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these calculations, it appears that for low frequencies the back e.m.f.

method is not useful for detection of cracks and that the temperature

scan approach appears to be much more promising for nondestructive test-

ing in this case.

Eddy Current Intensity Factor. It is well known from elastic fracture

mechanics that stress components exhibit a square root singlAexi'y near

a crack tip. It is therefore expected that the components of the current

vector, in this problem, should display similar behavior near a crack tip.
A2

This, in fact, is the case, as shown in Fig. 11 where J is plotted

as a function of r, the distance from the right crack tip. The plot

is for the coil center at (1,0,1). The eddy current density squared

is seen to be inversely proportional to the distance r.

An eddy current intensity factor M•1I, analogous to the stress

intensity factor for Mode I11, is defined here as

A plot of M1I.1 at the two crack tips, as functions of coil posi-

tion, is shown in Fig. 12. The eddy current intensity factor is seen

to peak when an edge of the coil is near a crack tip.

Computing Times. All the computing reported in this paper was carried

out on an IBM 370/168 computer at Cornell University. A typical compu-

ting time for stream lines in a cracked plate for a fixed coil position

(eg. Fig. 8 ) was i00 c.p.u. seconds.



EXPERINENTAL RESULTS

Infrared Experiments

Conventional eddy current nondestructive techniques use a small in-

duction coil and search coils to induce eddy currents near taie surface of

solids and to measure to back emf generated by these currents (12]. To detct

a flow or crack, the coils must be moved over the surface near the flow

in order to measure a change in voltage in the search coil. Recently a new

method has been proposed using infrared scanning technology [10]. This method

is based on the fact that eddy currents create heat and that this small

temperature change can be detected using an infrared sensitive device.

In the present experiments an aluminum plate 15 cm x 30 cm, 0.51 mm

thick, had a crack placed in its center, parallel to the 15 cm width. The

crack was created by scoring a line in the aluminum with a sharp edge and

flexing the plate until fatigue produced a thorough crack in the plate.

The length of the crack was 6 cm. One tip of the crack was 3 cm from one

edge of the plate and the other was 6 cm from the other edge.

The induction coil was wound from 10 turns of copper wire on a 5.1

cm coil form so that the mean diameter of the coil was about 5.7 cm, slight-

iv ismi, 11r than the crack length. The width of the coil was 1.3 cm and the

coil face was placed 6.4 mm from the plane of the cracked plate.

Pulsed electric currents of the order of 9.3 KA peak current and 3.2

msec. duration were used with a rise time to peak of about 0.7 msec. The

sensitivity of the infrared system was 0.1 - 0.200 . If an infrared scan

is made of the plate immediately after the firing of the current pulse,

heat conduction may be neglected, and the measured rise in temperature

is proportional to the integral of J2 over time. (See e.g. [i01.)

The infrared system used for these experiments is a UTI Corp. Spec-

trotherm infrared scanning system. Radiation from different points in

-18-
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the plane of focus is detected by a photoconductive crystal. A two-

dimensional scan is obtained by two sets of rotating mirrors. The output

can be displayed either on a grey scale tube or the voltage can be color

quantized into ten colors. Figure 13 shows a black and white photograph
2!

of two color quantized infrared scans. Each of the scans represent J2 "iso-

therms" for different induction coil positions. The top photo corresponds

to a coil position centered at the middle of the crack. The bottom photo

corresponds to an induction coilD position centered to the left of the crack

with the coil center 4 cm from the left edge of the plate. These photos

show that a "hot" spot forms at the tip of the crack due to the current

flowing around the crack. (The white line shows the vertical position

of the crack.) In Figure 13 a right crack tip shows up as circular iso-

therms. When the coil position is moved to the left the left crack tip

shows up as a hot spot, which appear as circular isotherms. The hot spot

on the left edge is due to increase of current density near the edge.

Needless to say, the color photograp•.a are more dramatic, But the exper-

iments show the same qualitative behavior as the numerical results in Fig-

u.res 7, 9 , 14 and 15.

Of course further experimental work must 1-i done to establish the

practical use of this technique, especially as regards below-surface cracks

that do not penetrate the solid. The results do indicate the potential

for such a technique. It is a visual methoi whose festures change qual-

itatively as well as quantitatively when a crack interupts the flow of

induced currents.
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Figure 13. Black and white photographs of color quantized infrared isotherms

of induced eddy currents in a cracked aluminum plate.
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